
Design Example: Design of a RISI Processor (MIPS R2000)

 CISC: Complex Instruction Set Computing, Intel 80x86, Motorola 68000/68020

o A variety of powerful instructions and addressing modes

 RISC: Reduced Instruction Set Computing, IBM 801, RS/6000, MIPS R2000 (Stanford), Sun Micro

SPARC.

o Use a small and simple set of instructions rather than a variety of complex

instructions and versatile addressing modes

 MIPS

o Performance metric: Millions of Instructions Per Second

o Microprocessor without hardware Interlock Processing System

 Characterises of most RISC Processors

o Uniform instruction length

o Few instruction formats

o Few addressing modes

o Large number of registers (RISC also called register-register architectures)

 CISC typically 8-12 vs. RISC often 32 registers

o Load and store architecture

 Only load and store instructions can access memory

 Key idea: the absence of arithmetic instructions that directly operate on

memory operands

o No implied operands (No side-effects)

 MIPS Instruction Set Architecture (ISA)

o Three address format for ALU instructions

 E.g., add $5, $3, $4

 Specify two sources addresses and one destination address

 Total 32 general purpose registers ($0, ... $31)

o Logical Instructions

o Arithmetic Instructions

o Memory Access Instructions

o Control Transfer Instructions

o Unconditional Control Transfer Instructions

o MIPS Instruction Encoding

 Three different instruction formats: R-format, I-format, J-format

 R-Format: ALU instructions require three operands. And the jump

register instruction.

 I-Format: arithmetic instructions, load and store instructions, and

branch instructions that need an immediate constant in the

instruction.

 J-Format: jump instructions.

o Instruction Encoding and Decoding

o Example:

 andi $3, $3, 0 (Hex: 30 63 00 00)

 lw $15, 4000($3) (Hex: 8C 6F 0F A0)

 bne $3, $2, -6 (Hex: 14 62 FF FA)

 Implementation of a MIPS Subset

o Arithmetic

 Add, subtract, add immediate

o Logic

 And, or, and immediate, or immediate, shift left logical, shift right logical

o Data transfer

 Load word, store word

o Conditional branch

 Branch on equal, branch on not equal, set on less than

o Unconditional branch

 Jump, jump register

 Design of the data path

o Working of a microprocessor

 Instruction fetch

 Instruction fetch unit

 Instruction decoding

 Decoding logic

 Execution (include memory write operation)

 ALU, register files, memory

o Overall Data Path Design

 Flow Chart for Instruction Processing

 Pipelining the design for efficiency

 Pipelined Data Path

 Pipelined Data Path with Control Signals

 Hazards in the pipelined design and data dependency

o Data Hazard

o Control Hazard (Branch Hazard)

o Solutions

 Data forwarding, Stall the pipeline

